
Design Example: Design of a RISI Processor (MIPS R2000)

 CISC: Complex Instruction Set Computing, Intel 80x86, Motorola 68000/68020

o A variety of powerful instructions and addressing modes

 RISC: Reduced Instruction Set Computing, IBM 801, RS/6000, MIPS R2000 (Stanford), Sun Micro

SPARC.

o Use a small and simple set of instructions rather than a variety of complex

instructions and versatile addressing modes

 MIPS

o Performance metric: Millions of Instructions Per Second

o Microprocessor without hardware Interlock Processing System

 Characterises of most RISC Processors

o Uniform instruction length

o Few instruction formats

o Few addressing modes

o Large number of registers (RISC also called register-register architectures)

 CISC typically 8-12 vs. RISC often 32 registers

o Load and store architecture

 Only load and store instructions can access memory

 Key idea: the absence of arithmetic instructions that directly operate on

memory operands

o No implied operands (No side-effects)

 MIPS Instruction Set Architecture (ISA)

o Three address format for ALU instructions

 E.g., add $5, $3, $4

 Specify two sources addresses and one destination address

 Total 32 general purpose registers ($0, ... $31)

o Logical Instructions

o Arithmetic Instructions

o Memory Access Instructions

o Control Transfer Instructions

o Unconditional Control Transfer Instructions

o MIPS Instruction Encoding

 Three different instruction formats: R-format, I-format, J-format

 R-Format: ALU instructions require three operands. And the jump

register instruction.

 I-Format: arithmetic instructions, load and store instructions, and

branch instructions that need an immediate constant in the

instruction.

 J-Format: jump instructions.

o Instruction Encoding and Decoding

o Example:

 andi $3, $3, 0 (Hex: 30 63 00 00)

 lw $15, 4000($3) (Hex: 8C 6F 0F A0)

 bne $3, $2, -6 (Hex: 14 62 FF FA)

 Implementation of a MIPS Subset

o Arithmetic

 Add, subtract, add immediate

o Logic

 And, or, and immediate, or immediate, shift left logical, shift right logical

o Data transfer

 Load word, store word

o Conditional branch

 Branch on equal, branch on not equal, set on less than

o Unconditional branch

 Jump, jump register

 Design of the data path

o Working of a microprocessor

 Instruction fetch

 Instruction fetch unit

 Instruction decoding

 Decoding logic

 Execution (include memory write operation)

 ALU, register files, memory

o Overall Data Path Design

 Flow Chart for Instruction Processing

 Pipelining the design for efficiency

 Pipelined Data Path

 Pipelined Data Path with Control Signals

 Hazards in the pipelined design and data dependency

o Data Hazard

o Control Hazard (Branch Hazard)

o Solutions

 Data forwarding, Stall the pipeline

